3.226 \(\int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx\)

Optimal. Leaf size=78 \[ \frac {\sqrt {a} (2 A+B) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a B \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}} \]

[Out]

(2*A+B)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)/d+a*B*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*se
c(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {4016, 3801, 215} \[ \frac {\sqrt {a} (2 A+B) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a B \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(Sqrt[a]*(2*A + B)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a*B*Sec[c + d*x]^(3/2)*Sin[c
 + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3801

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*a*Sq
rt[(a*d)/b])/(b*f), Subst[Int[1/Sqrt[1 + x^2/a], x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[(a*d)/b, 0]

Rule 4016

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[(-2*b*B*Cot[e + f*x]*(d*Csc[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]]
), x] + Dist[(A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1)), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^n, x], x]
/; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n
, 0] &&  !LtQ[n, 0]

Rubi steps

\begin {align*} \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx &=\frac {a B \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {1}{2} (2 A+B) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a B \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}-\frac {(2 A+B) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=\frac {\sqrt {a} (2 A+B) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {a B \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.29, size = 89, normalized size = 1.14 \[ \frac {\sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \sqrt {a (\sec (c+d x)+1)} \left (\sqrt {2} (2 A+B) \cos (c+d x) \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 B \sin \left (\frac {1}{2} (c+d x)\right )\right )}{2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(Sec[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])]*(Sqrt[2]*(2*A + B)*ArcTanh[Sqrt[2]*Sin[(c + d*
x)/2]]*Cos[c + d*x] + 2*B*Sin[(c + d*x)/2]))/(2*d)

________________________________________________________________________________________

fricas [B]  time = 0.75, size = 322, normalized size = 4.13 \[ \left [\frac {{\left ({\left (2 \, A + B\right )} \cos \left (d x + c\right ) + 2 \, A + B\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, B \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, \frac {{\left ({\left (2 \, A + B\right )} \cos \left (d x + c\right ) + 2 \, A + B\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) + \frac {2 \, B \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{2 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/4*(((2*A + B)*cos(d*x + c) + 2*A + B)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^
2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(co
s(d*x + c)^3 + cos(d*x + c)^2)) + 4*B*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))
/(d*cos(d*x + c) + d), 1/2*(((2*A + B)*cos(d*x + c) + 2*A + B)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c)
 + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)) + 2*B*sqrt((a*c
os(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {a \sec \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(a*sec(d*x + c) + a)*sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 2.19, size = 277, normalized size = 3.55 \[ \frac {\sqrt {\frac {1}{\cos \left (d x +c \right )}}\, \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (-1+\cos \left (d x +c \right )\right ) \left (2 A \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \cos \left (d x +c \right )-2 A \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \cos \left (d x +c \right )+B \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \cos \left (d x +c \right )-B \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}\, \cos \left (d x +c \right )-2 B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )\right )}{2 d \sin \left (d x +c \right )^{2} \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2),x)

[Out]

1/2/d*(1/cos(d*x+c))^(1/2)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))*(2*A*arctan(1/4*(-2/(1+cos(d*x+
c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c))*2^(1/2))*2^(1/2)*cos(d*x+c)-2*A*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(cos
(d*x+c)+1+sin(d*x+c))*2^(1/2))*2^(1/2)*cos(d*x+c)+B*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x
+c))*2^(1/2))*2^(1/2)*cos(d*x+c)-B*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c))*2^(1/2))*2^(
1/2)*cos(d*x+c)-2*B*(-2/(1+cos(d*x+c)))^(1/2)*sin(d*x+c))/sin(d*x+c)^2/(-2/(1+cos(d*x+c)))^(1/2)

________________________________________________________________________________________

maxima [B]  time = 1.59, size = 905, normalized size = 11.60 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/4*(2*A*sqrt(a)*(log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2
*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1
/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^
2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*si
n(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2)) - (4*sqrt(2)*cos(
3/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d*x + 2*c) - 4*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x +
c)))*sin(2*d*x + 2*c) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arcta
n2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arcta
n2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + (cos(2*d*x + 2
*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*
sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sq
rt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d
*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x
+ c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), co
s(d*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(s
in(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(s
in(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 4*(sqrt(2)*cos(2*d
*x + 2*c) + sqrt(2))*sin(3/2*arctan2(sin(d*x + c), cos(d*x + c))) + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin
(1/2*arctan2(sin(d*x + c), cos(d*x + c))))*B*sqrt(a)/(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x +
2*c) + 1))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(1/2),x)

[Out]

int((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))*sec(d*x+c)**(1/2)*(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))*(A + B*sec(c + d*x))*sqrt(sec(c + d*x)), x)

________________________________________________________________________________________